

ANHE520F InSb Hall Element

- · Ultra High-sensitivity InSb Hall element
- · Classic SOT Package
- · Shipped in packet-tape reel (3000pcs per reel)

Absolute Maximum Rating

Item	Symbol	Conditions	Limit	Unit
Operating Temperature Range	T opr		-40 ~ +125	${\mathbb C}$
Storage Temperature Range	T STG		-55 ~ +150	${\mathbb C}$
Maximum Input Current	I cmax	T _a = 25℃	20	mA
Maximum Input Voltage	V_{cmax}	T _a = 25°C	2	٧

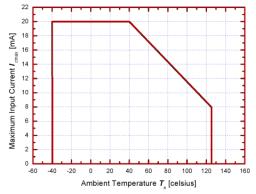


Figure 1. 2 Maximum input Current $I_{\rm cmax}$

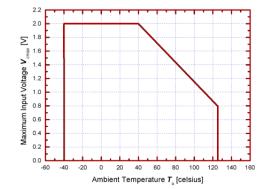
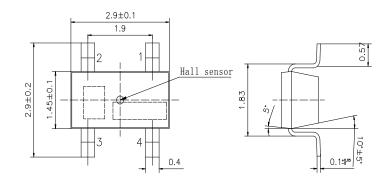
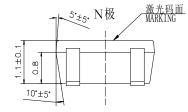




Figure 1. 2 Maximum input Voltage $\boldsymbol{V}_{\text{cmax}}$

Dimensional Drawing (Unit: mm)

引脚定义 (Pinning)			
输入 Input	1 (±)	3 (∓)	
输出 Output	2 (±)	4(∓)	

Electrical Characteristics (RT=25°C)

Table 1. Electrical Characteristics of ANHE520F

Item	Symbol	Test Condi.	Min.	Тур.	Max.	Unit
Hall Voltage	V _H	$\boldsymbol{B} = 50 \text{mT}, \boldsymbol{V}_{c} = 1 \text{V}$ $\boldsymbol{T}_{a} = \text{RT}$	168		516	mV
Input Resistance	$ extit{\emph{R}}_{ ext{in}}$	$\boldsymbol{B} = \text{OmT}, \boldsymbol{I}_{\text{c}} = \text{O. 1mA}$ $\boldsymbol{I}_{\text{a}} = \text{RT}$	240		550	Ω
Output Resistance	$ extbf{\emph{R}}_{ ext{out}}$	$\boldsymbol{B} = \text{OmT}, \boldsymbol{I}_{\text{C}} = \text{O. 1mA}$ $\boldsymbol{I}_{\text{a}} = \text{RT}$	240		550	Ω
Offset Voltage	V _{os}	$\boldsymbol{B} = \text{OmT}, \boldsymbol{V}_{\!\scriptscriptstyle \mathbb{C}} = 1\text{V}$ $\boldsymbol{T}_{\!\scriptscriptstyle \mathrm{a}} = \text{RT}$	-5		+5	mV
Temp. Coeffi. of $V_{\scriptscriptstyle \rm H}$	a V H	$B = 50 \text{mT}, I_{c} = 5 \text{mA},$ $I_{a} = 0 \text{°C} 40 \text{°C}$		-1.8		%/°C
Temp. Coeffi. of R _{in}	a R in	$\boldsymbol{B} = 0 \text{mT}, \boldsymbol{I}_{c} = 0.1 \text{mA},$ $\boldsymbol{T}_{a} = 0 \text{°C} ^{\sim} 40 \text{°C}$		-1.8		%/°C
Dielectric strength		100V D.C	1.0			MΩ

Note:

1. $\boldsymbol{V}_{H} = \boldsymbol{V}_{H-M} - \boldsymbol{V}_{os}$

In which $V_{\text{H-M}}$ is the Output Hall Voltage, V_{H} is the Hall Voltage and V_{os} is the offset Voltage under the identical electrical stimuli.

2.
$$\alpha V_H = \frac{1}{V_H(T_1)} \times \frac{V_H(T_3) - V_H(T_2)}{(T_3 - T_2)} \times 100$$

$$T_1 = 20$$
°C, $T_2 = 0$ °C, $T_3 = 40$ °C

3.
$$\alpha R_{in} = \frac{1}{R_{in}(T_1)} \times \frac{R_{in}(T_3) - R_{in}(T_2)}{(T_3 - T_2)} \times 100$$

$$T_1 = 20$$
°C, $T_2 = 0$ °C, $T_3 = 40$ °C

Classification of Output Hall Voltage ($V_{\!\scriptscriptstyle H}$)

Table 2. Classification of Hall Voltage

Rank	V _H [mV]	Conditions	
С	168 ~ 204		
D	$196 \sim 236$		
Е	$228\sim274$		
F	$266 \sim 320$	D-50-T V -1V	
G	$310 \sim 370$	B=50mT, V _c =1V	
Н	$360 \sim 415$		
I	$405 \sim 465$		
J	454 ~ 516		

Characteristic Curves

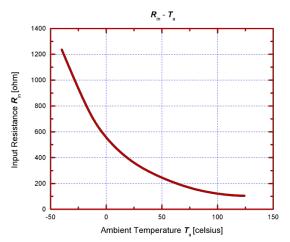


Figure 2. Input resistance $\textbf{\textit{R}}_{in} \, \text{as} \, \, \text{a} \, \, \text{function of ambient temperature} \, \, \textbf{\textit{T}}_{a.}$

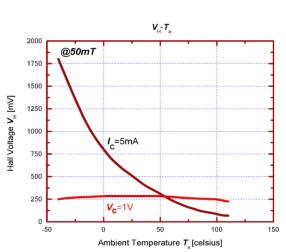


Figure 4. Hall voltage $\emph{\textbf{V}}_{H}$ as a function of ambient temperature $\emph{\textbf{T}}_{a.}$

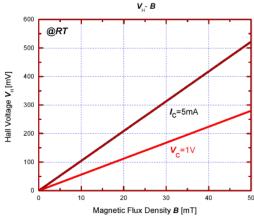


Figure 3. Hall voltage $\emph{\textbf{V}}_{H}$ as a function of magnetic flux density $\emph{\textbf{B}}.$

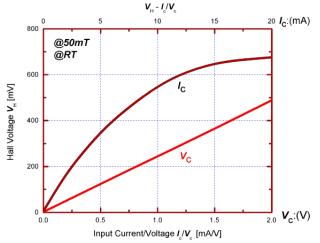


Figure 5. Hall voltage V_{H} as a function of electrical stimuli $I_{\text{c}}/V_{\text{c}}$.

© 2024 APSEMI // ANHE520F

www.a-semi.com

Page 2

Dec,2024

Page 2

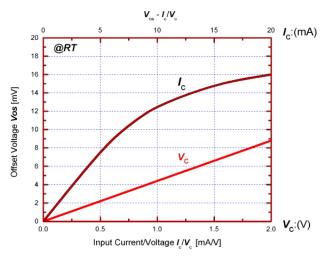


Figure 6. Offset voltage \emph{V}_{os} as a function of electrical stimuli $\emph{I}_{c}/$ $\emph{V}_{c.}$

Reliability Test Terms

Table 2. Reliability Test Terms, Conditions and Duration.

Table 2. Reliability less ferms, conditions and baracion.					
No.	Terms	Conditions	Duration		
1	High Temperature Storage (HTS)	[JEITA EIAJ ED-4701] $T_{\rm a} = 150 \ (0 \ ^{\sim} + 10) \ ^{\circ}{\rm C}$	1000 hrs		
2	Heat Cycle (HC)	[JEITA EIAJ ED-4701] $ \pmb{T}_a = -55 \text{\mathbb{C}}^{\sim} 150 \text{\mathbb{C}} $ high temp normal temp low temp. $ 30 \text{min} - 5 \text{min} - 30 \text{min} $	30 cycles		
3	Temp. Humidity Storage (THS)	[JEITA EIAJ ED-4701] $T_a = 85 \pm 3 \text{°C}, \textit{R}_{\textit{H}} = 85 \pm 5 \%$	1000 hrs		
4	Reflow Soldering (RS)	【JEITA EIAJ ED-4701】 260 ± 5 $^{\circ}\mathrm{C}$	10 sec		
5	High Temp. Operating (HTO)	T_{a} =125 °C, V_{c} =1V	1000 hrs		

Criteria:

- Variation of Hall Voltage \emph{V}_{H} and input/output resistances $\emph{R}_{\text{in/out}}$ are less than 20%.
- Variation of offset voltage \emph{V}_{os} is less than $\pm 16 \text{mV}.$
- $\overline{}$ Other parameters in **Table 1**. are still within their ranges stated in **Table 1**.

Soldering Conditions

The following conditions should be preserved. Solder ability should be checked by yourself, because it is depend on solder paste material and other parameters.

Material of solder flux

 $^-$ Use the resin based flux and refrain from using organic or inorganic acid based and water-soluble one

Cleansing of solder flux conditions

- Use Ethanol or Isopropyl alcohol as cleansing material.
- Process temperature should be 50 °C or less.
- Duration should be 5 minutes or less.

Hand soldering conditions

- Apart from the mold resin more than 1mm.
- Solder at temperature 300 °C for less than 5s.

Wave soldering conditions

- Temperature in Pre-heating zone should be lower than 150°C.
- Temperature in Soldering zone should be lower than 270°C.

Precautions for ESD

This product is the device that is sensitive to ESD (Electrostatic Discharge). Handling Hall Elements with the ESD-Caution mark under the environment in which

- Static electrical charge is unlikely to arise (Ex: Relative Humidity over 40%RH).
- Wearing the anti-static suit and wristband when handling the devices.
- Implementing measures against ESD as for containers that directly touch the devices.

Precautions for Storage

- Products should be stored at an appropriate temperature and humidity (5° C to 35° C, 40%RH to 60%RH) after the unsealing of the MBB. Keeping products away from chlorine and corrosive gas.
- For storage longer than 2 years

Products are sealed in MBB with a desiccant. It is recommended to store in nitrogen atmosphere with MBB sealed. Oxygen and H_2O of atmosphere oxidizes leads of products and lead solder ability get worse.

Precautions for Safety

- Do not alter the form of this product into a gas, powder or liquid through burning, crushing or chemical processing.
- Observe laws and company regulations when discarding this product.