

AHW-101A-4T InSb Hall Element

- · Ultra High-sensitivity InSb Hall element
- · Classic SOT Package
- · Shipped in packet-tape reel (3000pcs per reel)

Absolute Maximum Rating

Item	Symbol	Conditions	Limit	Unit
Operating Temperature Range	T opr		-40 ~ +125	${\mathbb C}$
Storage Temperature Range	T STG		-55 ~ +150	${\mathbb C}$
Maximum Input Current	I cmax	7 _a = 25℃	20	mA
Maximum Input Voltage	V_{cmax}	T _a = 25°C	2	V

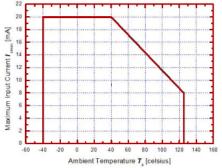


Figure 1. 1 Maximum input current Icmax

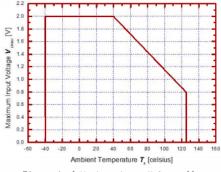
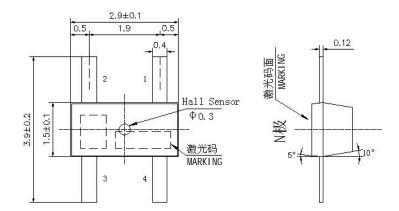
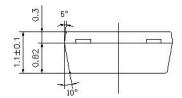




Figure 1. 2 Maximum input Voltage $\emph{\textbf{V}}_{cmax}$

Dimensional Drawing (Unit: mm)

引脚短	宦义(Pinn	ning)
輸入 Input	1 (±)	3 (干)
输出 Output	2 (±)	4 (∓)

Electrical Characteristics (RT=25°C)

Table 1. Electrical Characteristics of AHW-101A-4T

Item	Symbol	Test Condi.	Min.	Тур.	Max.	Unit
Hall Voltage	V _H	$\boldsymbol{B} = 50 \text{mT}, \boldsymbol{V} = 1 \text{V}$ $\boldsymbol{T}_{a} = \text{RT}$	168		516	mV
Input Resistance	$R_{\scriptscriptstyle m in}$	$\boldsymbol{B} = 0 \text{mT}, \boldsymbol{I}_{c} = 0.1 \text{mA}$ $\boldsymbol{I}_{a} = RT$	240		550	Ω
Output Resistance	$R_{ m out}$	$\boldsymbol{B} = \text{OmT}, \boldsymbol{I}_{c} = \text{O. 1mA}$ $\boldsymbol{I}_{a} = \text{RT}$	240		550	Ω
Offset Voltage	V ₀s	$\boldsymbol{B} = \text{OmT}, \boldsymbol{V}_{\!\!\scriptscriptstyle C} = 1\text{V}$ $\boldsymbol{T}_{\!\!\scriptscriptstyle a} = \text{RT}$	-5		+5	mV
Temp. Coeffi. of $V_{\scriptscriptstyle \rm H}$	a V H	$\boldsymbol{B} = 50 \text{mT}, \boldsymbol{I}_{c} = 5 \text{mA},$ $\boldsymbol{I}_{a} = 0 \text{°C} ^{\sim} 40 \text{°C}$		-1.8		%/°C
Temp. Coeffi. of R_{in}	а R in	$B = 0 \text{mT}, I_{c} = 0.1 \text{mA},$ $I_{a} = 0 \text{°C} 40 \text{°C}$		-1.8		%/°C
Dielectric strength		100V D. C	1.0			MΩ
NT 4						

Note:

1. $\boldsymbol{V}_{H} = \boldsymbol{V}_{H-M} - \boldsymbol{V}_{os}$

In which $V_{\text{H-M}}$ is the Output Hall Voltage, V_{H} is the Hall Voltage and V_{os} is the offset Voltage under the identical electrical stimuli.

2.
$$\alpha V_H = \frac{1}{V_H(T_1)} \times \frac{V_H(T_3) - V_H(T_2)}{(T_3 - T_2)} \times 100$$

3.
$$\alpha R_{in} = \frac{1}{R_{in}(T_1)} \times \frac{R_{in}(T_3) - R_{in}(T_2)}{(T_3 - T_2)} \times 100$$
 $T_1 = 20$ °C, $T_2 = 0$ °C, $T_3 = 40$ °C

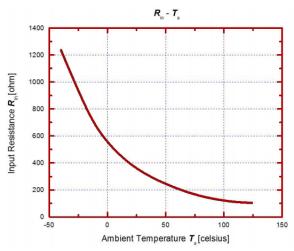
© 2024 APSEMI // AHW-101A-4T

www.a-semi.com

Page 1

Page 1

Dec,2024



Classification of Output Hall Voltage ($V_{\!\scriptscriptstyle H}$)

Table 2. Classification of Hall Voltage

Rank	V _H [mV]	Conditions
С	168 ~ 204	
D	196 ~ 236	
Е	$228 \sim 274$	
F	$266 \sim 320$	D-50-T V -1V
G	310 ~ 370	B=50mT, V _c =1V
Н	360 ~ 415	
I	$405 \sim 465$	
J	$454 \sim 516$	

Characteristic Curves

V_H-B

600

0RT

500

400

100

100

100

100

Magnetic Flux Density B [mT]

Figure 2. Input resistance $R_{\rm in}$ as a function of ambient temperature $T_{\rm a.}$

Figure 3. Hall voltage $\textbf{\textit{V}}_{\textrm{H}}$ as a function of magnetic flux density $\textbf{\textit{B}}.$

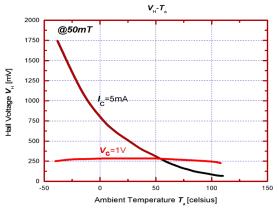


Figure 4. Hall voltage \emph{V}_{H} as a function of ambient temperature $\emph{T}_{a.}$

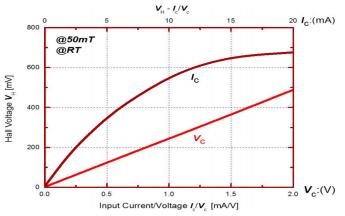


Figure 5. Hall voltage \emph{V}_{H} as a function of electrical stimuli $\emph{I}_{c}/\emph{V}_{c}$.

© 2024 APSEMI // AHW-101A-4T

www.a-semi.com

Page 2

Rev 1.0

Dec,2024

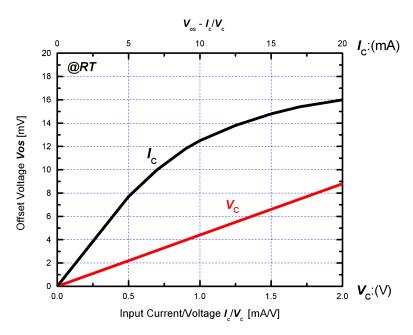


Figure 6. Offset voltage \emph{V}_{os} as a function of electrical stimuli $\emph{I}_{c}/$ $\emph{V}_{c.}$

Reliability Test Terms

Table 2. Reliability Test Terms, Conditions and Duration.

No.	Terms	Conditions	Duration
1	High Temperature Storage (HTS)	[JEITA EIAJ ED-4701] $T_{\rm a} = 150 \ (0 \ ^{\sim} \ +10) \ ^{\circ}{\rm C}$	1000 hrs
2	Heat Cycle (HC)	[JEITA EIAJ ED-4701] $T_a = -55 \text{C}^-150 \text{C}$ high temp normal temp low temp. $30 \text{min} - 5 \text{min} - 30 \text{min}$	30 cycles
3	Temp. Humidity Storage (THS)	[JEITA EIAJ ED-4701] $ T_a = 85 \pm 3 ^{\circ}\text{C} , \ \textit{R}_{\textit{H}} = 85 \pm 5 \% $	1000 hrs
4	Reflow Soldering (RS)	【JEITA EIAJ ED-4701】 260 ± 5 $^{\circ}$	10 sec
5	High Temp. Operating (HTO)	$ alla_{ m a}$ =125 °C, $ extbf{\emph{V}}_{ m c}$ =1V	1000 hrs

Criteria:

- Variation of Hall Voltage \emph{V}_{H} and input/output resistances $\emph{R}_{\text{in/out}}$ are less than 20%.
- Variation of offset voltage $\textit{\textbf{V}}_{os}$ is less than $\pm\,16\,\text{mV}.$
- $^-$ Other parameters in **Table 1**. are still within their ranges stated in **Table 1**.

Soldering Conditions

The following conditions should be preserved. Solder ability should be checked by yourself, because it is depend on solder paste material and other parameters.

Material of solder flux

- Use the resin based flux and refrain from using organic or inorganic acid based and water-soluble one.

Cleansing of solder flux conditions

- Use Ethanol or Isopropyl alcohol as cleansing material.
- Process temperature should be 50 °C or less.
- Duration should be 5 minutes or less.

Hand soldering conditions

- Apart from the mold resin more than 1mm.

Wave soldering conditions

- Temperature in Pre-heating zone should be lower than 150°C.
- Temperature in Soldering zone should be lower than 270°C.

Precautions for ESD

This product is the device that is sensitive to ESD (Electrostatic Discharge). Handling Hall Elements with the ESD-Caution mark under the environment in which

- Static electrical charge is unlikely to arise (Ex: Relative Humidity over 40%RH).
- Wearing the anti-static suit and wristband when handling the devices.
- Implementing measures against ESD as for containers that directly touch the devices.

Precautions for Storage

- Products should be stored at an appropriate temperature and humidity (5° C to 35° C, 40%RH to 60%RH) after the unsealing of the MBB. Keeping products away from chlorine and corrosive gas.
- For storage longer than 2 years

Products are sealed in MBB with a desiccant. It is recommended to store in nitrogen atmosphere with MBB sealed. Oxygen and H_2O of atmosphere oxidizes leads of products and lead solder ability get worse.

Precautions for Safety

- Do not alter the form of this product into a gas, powder or liquid through burning, crushing or chemical processing.
- Observe laws and company regulations when discarding this product.