
PSEM

1 Form A APV256AE_EH SMD-6/DIP-6 Load Voltage:600V Load Current:200mA

APSEMI PhotoRelays

®

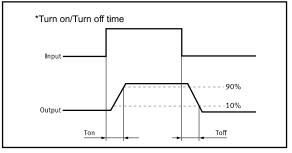
APSEMI Photorelays are the most reliable, technically advanced logic-to-power interface devices. Their basic function is to take a low current signal from a microprocessor to control the switching of both AC and DC loads, while providing an isolation barrier between logic and power. While this function is common to all relays, Photorelays provide distinct advantages over their mechanical counterparts including:

- Long life (No limit on mechanical and electrical
- lifetime)Bounce-free switching
- Higher speed and high frequency switching
- Higher sensitivity (less power consumption)

- No have voltaic arc, bounce, and noise More
- resistant to vibration and impact AC or DC load
- switching
- Small package size

Immunity to EMI or RFI

Applications


These advantages make APSEI Photorelays the ideal choice for:

- Telecom/Datacom switching •
- Multiplexers •
- Meter reading systems
- Data acquisition
- Medical equipment •
- Battery monitoring •
- I/O Sub-Systems •

- Home/Safety security systems
- Process Control
- **Energy Management**
- Reed Relay EMR Replacement
- Programmable Controllers

TPYES

Category	Output Rating		Paakaga	Part No.	Packing Quantity
	Load Voltage	Load Current	Package	Fall NO.	Packing Quantity
AC/DC	600V 0.2A	0.04	DIP-6	APV256AE	50pcs /tube
		0.2A	SMD-6	APV256AEH	1000pcs /reel

Robotics Aerospace

1 Form A APV256AE_EH SMD-6/DIP-6 Load Voltage:600V Load Current:200mA

RATING

®

Absolute maximum ratings

APSEMI

Parameter		Symbol	Min.	Max.	Units	Note
Storage Temperature	Τ _S	-55	125	°C		
Operating Temperature		TA	-40	85	°C	
Junction Temperature		Тյ		125	°C	
Lead Soldering Cycle	Temperature			260	°C	
	Time			10	sec	
Input Current	Average	I _F		25	mA	
	Surge			50	mA	
	Transient			1000	mA	
Reversed Input Voltage		V _R		5	V	
Input Power Dissipation		P _{IN}		40	mW	
Output Power	Connection A	Po		640	mW	
Dissipation	Connection B			640	mW	
Average Output Current	Connection A	IO		0.2	А	
$(T_A = 25^{\circ}C, T_C \le 100^{\circ}C)$	Connection B	_		0.4	А	
Output Voltage	Connection A	Vo	- 600	600	V	1
(T _A =25°C)	Connection B		0	600	V	
ESD Human Body Model: MIL-STD-883 Method 3015.7				4	kV	
Solder Reflow Temperatu	See Lead	Free IR Pro	file			

Recommended operating conditions Please use under recommended operating conditions to obtain expected characteristics.

Parameter	Symbol	Min.	Max.	Units	Note
Input Current (ON)	I _{F(ON)}	3	20	mA	
Input Voltage (OFF)	V _{F(OFF)}	0	0.8	V	
Operating Temperature	T _A	-40	+85	°C	

Electrical characteristics

APSEMI

®

Electrical Specifications (DC)

Over recommended operating $T_A = -40^{\circ}$ C to 85°C, $I_F = 5$ mA to 10mA, unless otherwise specified.

Parameter Output Withstand Voltage		Sym.	Min.	Тур.	Max.	Units	Conditions	Fig.	Note
		V _{O(OFF)} 600	600	650		V	V _F =0.8V, I _O =250μA, T _A =25°C		
			550			V	V _F =0.8V, I _O =250μA		
Output On-Resistance	Connection A	R _(ON)		13	16	Ω	I _F =5mA, I _O =0.4A, Pulse ≤30ms, T _A =25°C	3 10	- 6
	Connection B	R _(ON)		2.5	4	Ω	I _F =5mA, I _O =0.4A, Pulse ≤30ms, T _A =25°C	11	6
Output Leakage Current		I _{O(OFF)}		0.001	0.1	μΑ	V _F =0.8V, V _O =600V, T _A =25°C	5	-
					1	μA	V _F =0.8V, V _O =550V	4	-
Output Off-Capa	acitance	C _(OFF)		500		рF	V _F =0.8V, V _O =0V, f=1MHz	6	-
Output Offset Voltage		V _(OS)		1		μV	I _F =5mA, I _O =0mA		
Input Reverse Breakdown Voltage		VR	5			V	I _R =10μΑ		
Input Forward Voltage		VF	1.1	1.3	1.7	V	I _F =5mA	7,8	-

Switching Specifications (AC)

Over recommended operating $T_A = -40^{\circ}$ C to 85°C, $I_F = 5$ mA to 10mA, unless otherwise specified.

Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions	Fig.	Note
Turn On Time	T _{ON}		0.7	2.5	ms	I _F =5mA, I _O =0.4A, T _A =25°C	12,16	
				5.0	ms	I _F =5mA, I _O =0.4A	13,16	
			0.4	1.5	ms	I _F =10mA, I _O =0.4A, T _A =25°C		
				3.0	ms	I _F =10mA, I _O =0.4A	13,16	
Turn Off Time	T _{OFF}		0.07 0.5 ms I _F =5mA, I _O =0.4A, T _A =25°C		I _F =5mA, I _O =0.4A, T _A =25°C	14,16		
				1	ms	I _F =5mA, I _O =0.4A	15,16	
			0.06	0.2	ms	I _F =10mA, I _O =0.4A, T _A =25°C	14,16	
				0.5	ms	I _F =10mA, I _O =0.4A	15,16	
Output Transient Rejection	dV _O /dt	1	7		kV/μs	$\label{eq:dv_O} \begin{split} \Delta V_O = & 600V, \ R_M \geq 1 M \Omega, \\ C_M = & 1000 \ pF, \ T_A = & 25^\circ C \end{split}$	17	5
Input-Output Transient Rejection	dV _{I-O} /dt	1	20		kV/μs	V _{DD} =5V, ΔV _{I-O} =1000V, R _L =1kΩ, C _L =25pF, T _A =25°C	18	5

APSEMI

Engineering Data

®

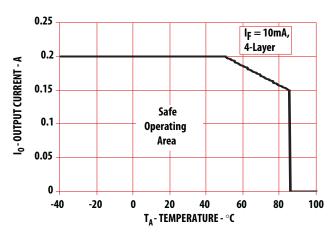


Figure 1. Maximum Output Current Rating vs Ambient Temperature (AC/DC Connection)

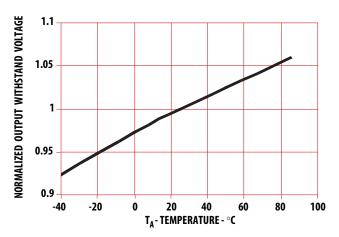


Figure 3. Normalized Typical Outupt Withstand Voltage vs Temperature

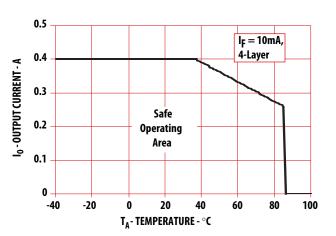


Figure 2. Maximum Output Current Rating vs Ambient Temperature (DC Connection)

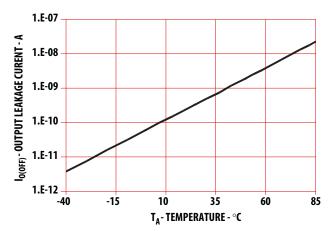
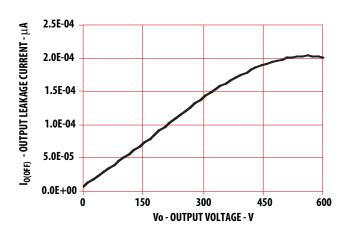
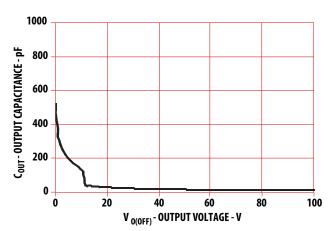
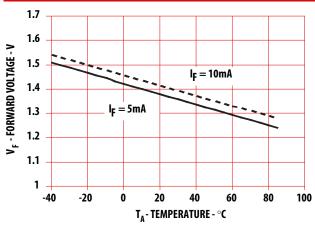
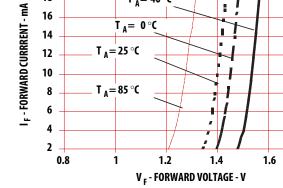




Figure 4. Typical Output Leakage Current vs Ambient Temperature





® PSEMI

T_A=-40 °C

 $T_A = 0 \circ C$

T_A=25 °C

ł

1.8

20 18

16

14

12

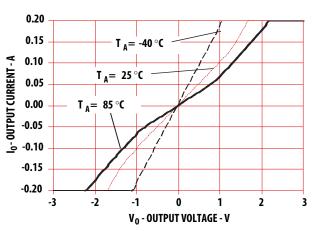
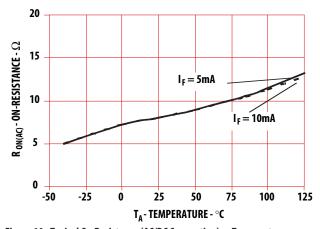



Figure 9. Typical Output Current vs Output Voltage

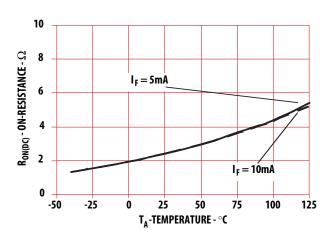


Figure 11. Typical On Resistance (DC Connection) vs Temperature

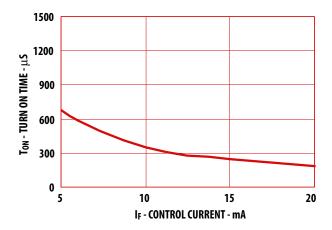
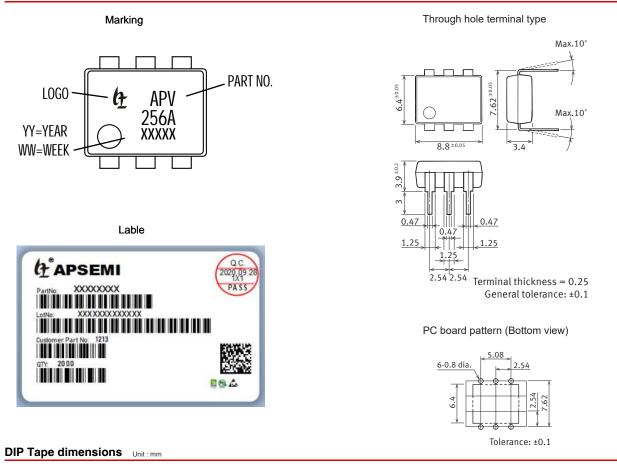
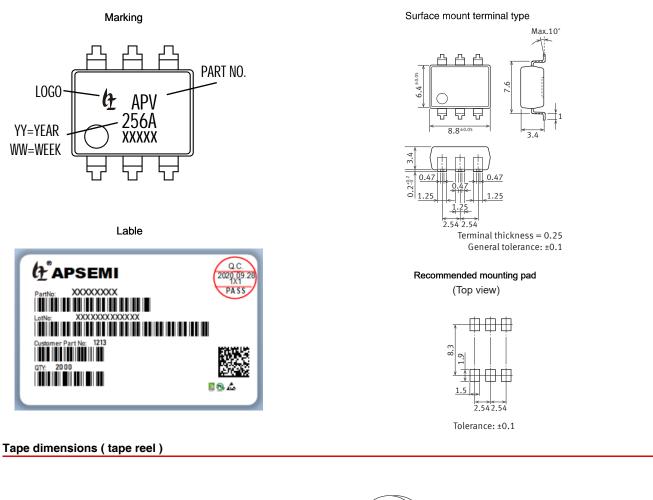



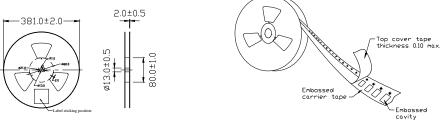
Figure 12. Typical Turn On Time vs Input Current

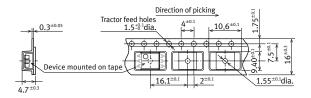
Dimensions and DIP-6 Package Unit: mm

APSEMI

®

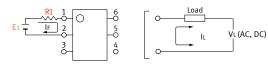

Devices are packaged in a tube so that pin No. 1 is on the stopper B side. Observe correct orientation when mounting them on PC boards.

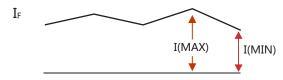



APSEM SMD-6/I

Dimensions and SMD-6 Package Unit: mm

®



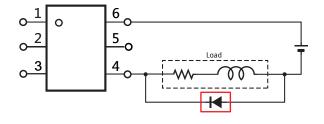

Using Methods

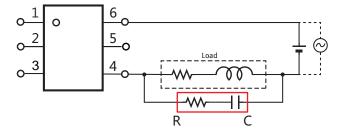
Examples of resistance value to control LED forward current (IF=5mA)

E1	R1 (Approx)
3.3V	300 Ω
5.0V	600 Ω
12V	1.9KΩ
24V	4.1K Ω

LED forward current must be more than 5mA , at I(MIN) ,and less than 30mA , at I(MAX).

Recommended Operating Conditions


Please obey the following conditions to ensure proper device operation and resetting. Input LED current (Recommended value):


Characteristic	Symbol	Min	Тур.	Max	Unit
Forward current	١ _F	5.0	7.0	30	mA

Protection Circuit

Clamp diode is connected in parallel with the load. Absorb capacity with external diode.

CR Snubber is connected in parallel with the load. Absorb capacity with buffer capacity.

When adding diodes, buffer circuits (C-R), and other protections, they need to be installed near the MOS RELAY to be effective. Adding protection elements may result in a slow reset time, so adjust them according to the actual situation before use.

Note: When developing designs using this product, perform the expected performance of the equipment under the operating conditions recommended by the guidelines in this document. Continuous use under heavy loads (including, but not limited to, the application of high temperatures/current/voltage and significant changes in temperature, etc.) may result in deterioration of the reliability of this product.

RESTRICTIONS ON PRODUCT USE

APSEMI Co. and its subsidiaries and affiliates (collectively "APSEMI") reserve the right to make changes to all information contained in this document relating to hardware, software, and systems (collectively "Products").

No information in this document may be reproduced without the prior written permission of APSEMI. Even with APSEMI's written permission, this document may only be reproduced if it is guaranteed to be unaltered or missing.

APSEMI assumes no responsibility for unintended uses of the product:

Unintended uses include, but are not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, automobiles, trains, ships, and other transportation equipment, traffic signaling equipment, equipment used for the control of combustion or explosions, safety devices, elevators and escalators, equipment used in electrical power-related applications, and equipment used in financial-related applications.

APSEMI assumes no responsibility for the product if you use it for any purpose other than the specific purpose described in this document.

 The information contained herein is provided only as a guide for the use of the product. APSEMI assumes no responsibility for infringement of third party patents or any other intellectual property rights that may result from the use of the product. This document does not grant any license, express or implied, estoppel or otherwise, to any intellectual property.

- GaAs (Gallium Arsenide) is used in products and is harmful to humans. Inadvertent ingestion or absorption of GaAs can harm the human body, so handle the product with care and do not break, cut, crush, grind, chemically dissolve, or otherwise expose GaAs in the product.

•Please be aware of environmental issues and use products in compliance with all applicable laws and regulations governing the inclusion or use of controlled substances, including but not limited to the EU RoHS Directive. APSEMI assumes no responsibility for damages or losses resulting from non-compliance with applicable laws and regulations.

R

APSEMI