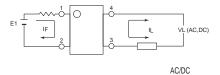
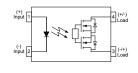
APSEMI®


Parameter	Symbol	Rating	Units	
Load Voltage	VL	60	V	
Load Current	IL	1.8	Α	
On-Resistance	Ron	0.068	Ω	
On-Resistance	V/IO	2500	Vrms	



(Unit: mm)

1. LED Anode

2. LED Cathode

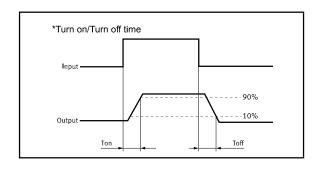
3.4. Drain(MOS FET)

SOP-4

APSEMI PhotoRelays

- Long life (No limit on mechanical and electrical
- lifetime)Bounce-free switching
- Higher speed and high frequency switching
- Higher sensitivity (less power consumption)
- Immunity to EMI or RFI

- No have voltaic arc, bounce, and noise More
- resistant to vibration and impact AC or DC load
- switching
- Small package size


Applications

- Telecom/Datacom switching
- Multiplexers
- Meter reading systems
- Data acquisition
- Medical equipment
- Battery monitoring
- I/O Sub-Systems

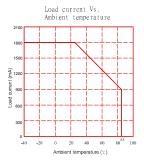
- Robotics
- Aerospace
- Home/Safety security systems
- Process Control
- **Energy Management**
- Reed Relay EMR Replacement
- Programmable Controllers

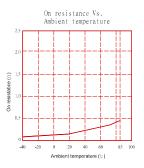
TPYES

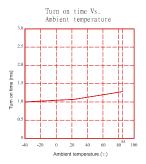
Catagoni		Output Rating		Doolsome	Part No.	Packing Overtity	
	Category	Load Voltage	Load Current	Package	Part No.	Packing Quantity	
	AC/DC	60V	1.8A	SOP-4	GAQY212G2S	2000pcs /reel	

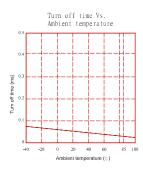
Absolute Maximum Ratings (Ta = 25°C)

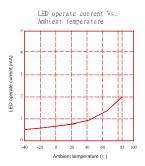
Item		Symbol	Va l ue	Units	Note	
	Continuous LED Current	lF	50	mA		
Input	Peak LED Current	I FP	1000	mA	f=100Hz, duty=1%	
·	LED Reverse Voltage	VR	5	V		
	Input Power Dissipation	P _{In}	75	mW		
	Load Voltage	V∟	60	V(AC peak or DC)		
	Load Current	l.	1.8	Α		
Output	Peak Load Current	Peak	4.0	Α	100ms(1 pulse)	
	Output Power Dissipation	Pout	380	mW		
Total Power	Dissipation	Р⊤	450	mW		
I/O Breakdov	vn Vo l tage	V _{I/O}	2500	Vrms	RH=60%, 1min	
Operating Temperature		Торг	-40 to 85	°C		
Storage Temperature		T _{stg}	-40 to 100	°C		
Pin Soldering Temperature		T _{sol}	260	°C	10 sec max.	

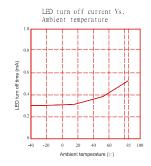

Electrical Characteristics (Ta = 25°C)

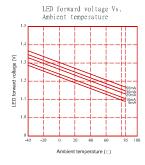

Item		Symbol	MIN.	TYP.	MAX.	Units	Conditions	
	LED Forward Voltage	VF		1.32	1.5	V	I⊧=10mA	
	Operation LED Current	Fon		0.5	2.0	mA		
Input	Recovery LED Current	Foff		0.35	0.5	mA		
	Recovery LED Voltage	V _{Foff}	0.7			٧		
							I⊧=5mA,I∟=Max	
Output	On-Resistance	Ron		0.068	0.1	Ω	Time to flow is within 1 sec.	
	Off-State Leakage	Leak		0.1		uA	V∟=Rating	
	Current	result					vi raang	
	Output Capacitance	Cout		155		pF	V∟=0, f=1MHz	
Transmis	Turn-On Time	Ton		0.8	1.3	ms	I⊧=5mA, I∟=Max	
sion	Turn-Off Time	Toff		0.6	0.8	ms		
Counted	I/O Isolation Resistance	R _{I/O}	10 ¹⁰			Ω	DC500V	
Coupled	I/O Capacitance	Ci/o		0.8	1.5	pF	f=1MHz	

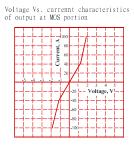

Please obey the following conditions to ensure proper device operation and resetting. Input LED current (Recommended value): IF ≥5mA and ≤30mA

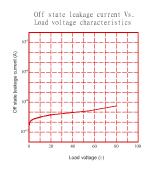


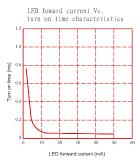

Engineering Data

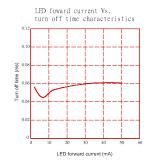


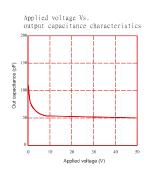


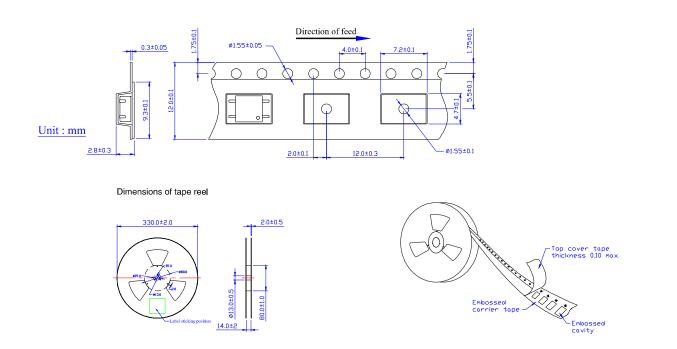








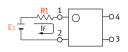


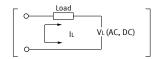


APSEMI®

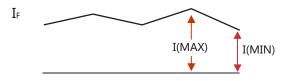
Dimensions and Package

Surface mount terminal type Unit: mm inch Tolerance: ±0.1 ±.004 0.66±0.2 .026‡.008 6.80±0.4 \bigcirc Marking PART NO. GAQY-Recommended mounting pad (Top view) 212G2 XXXXX YY=YEAR WW=WEEK Lable Unit: mm Tolerance: ±0.1


Tape dimensions



Using Methods

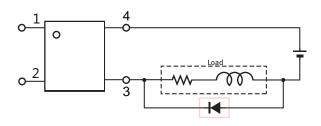

Examples of resistance value to control LED forward current (IF=5mA)

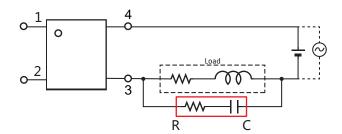
E1	R1 (Approx)
3.3V	300 Ω
5.0V	600 Ω
12V	1.9KΩ
24V	4.1K Ω

LED forward current must be more than 5mA , at I(MIN) ,and less than 30mA , at I(MAX).

Recommended Operating Conditions

Please obey the following conditions to ensure proper device operation and resetting. Input LED current (Recommended value):


Characteristic	Symbol	Min	Тур.	Max	Unit
Forward current	lF	5.0	7.0	30	mA


Protection Circuit

Output spike voltages:if an inductive load generates spike voltages which exceed heabsolute maximum rating, the spike voltage shall be limited.

Clamp diode is connected in parallel with the load. Absorb capacity with external diode.

CR Snubber is connected in parallel with the load. Absorb capacity with buffer capacity.

When adding diodes, buffer circuits (C-R), and other protections, they need to be installed near the MOS RELAY to be effective. Adding protection elements may result in a slow reset time, so adjust them according to the actual situation before use.

Note: When developing designs using this product, perform the expected performance of the equipment under the operating conditions recommended by the guidelines in this document. Continuous use under heavy loads (including, but not limited to, the application of high temperatures/current/voltage and significant changes in temperature, etc.) may result in deterioration of the reliability of this product.